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Abstract: 

 Artificial intelligence increasingly drives detection and response in modern security 

operations centers, yet the industry lacks a rigorous mechanism to validate 

AI‑recommended actions before they touch production systems. The proposed system 

introduces TwinSOC, a counterfactual verification framework in which machine‑learning 

detectors and an LLM‑based remediation planner operate in tandem with a high‑fidelity 

digital twin of the enterprise environment to test proposed responses before execution. 

TwinSOC binds every AI decision to a reproducible counterfactual experiment inside the 

twin, uses temporal‑logic safety contracts to ensure that isolation, identity, and network 

policy changes respect organizational constraints, and emits cryptographic attestations 

that record the exact models, data summaries, and policy versions that produced each 

pass‑or‑fail verdict. Actions only proceed to the orchestration layer when the 

counterfactual proves that service‑level objectives and access boundaries will hold with 

high confidence, while failed proposals return actionable explanations to human analysts. 

We present the system architecture, modeling and validation methods, and an evaluation 

plan that measures detection lift, response correctness, analyst workload, and safety 

violations prevented on both replayed attack traces and live pilot deployments. TwinSOC 

advances cybersecurity and AI by converting opaque recommendations into verifiable, 

policy‑safe interventions that can be audited end‑to‑end. 

Keywords: cybersecurity; artificial intelligence; incident response; digital twin; 

counterfactual simulation; explainability; trusted execution; provenance; SOAR. 
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I. Introduction 

Security teams have rapidly adopted machine‑learning detectors and large language 

models to triage alerts, summarize incidents, and recommend containment steps, but they 

remain reluctant to grant these systems broad autonomy because the consequences of an 

erroneous action can be severe. Blocking a legitimate service, revoking the wrong 

identity role, or isolating a critical network segment without advance verification can 

precipitate outages that eclipse the harm of the original threat. TwinSOC addresses this 

trust gap by requiring every AI‑generated response to be validated as a counterfactual in a 

digital twin that mirrors identity relationships, network topology, and policy semantics. 

Rather than executing a remediation directly, the system first simulates the action in the 

twin, checks temporal‑logic safety contracts that express organizational policies, and only 

then decides whether to promote the action to the production orchestrator or return it to 

an analyst with an explanation. This architecture preserves the speed benefits of AI while 

providing a principled safety layer that translates recommendations into verifiable, 

auditable interventions. 

II. Background and Related Work 

Contemporary security operations combine rule‑based correlation, anomaly detection, 

supervised classifiers, and increasingly LLM‑assisted triage to manage high alert 

volumes. Digital‑twin techniques have matured in cyber‑physical domains but are 

under‑explored for enterprise security, where identity graphs, routing policies, and access 

controls change continuously. Automated response platforms can execute playbooks at 

scale, yet their safeguards typically rely on static approvals or coarse pre‑checks rather 

than formal contracts tied to the exact proposed action. Research on explainable AI has 

improved analyst understanding of model outputs, but explanations alone do not 

guarantee that a recommended change will satisfy service‑level objectives or respect 

least‑privilege principles at runtime. TwinSOC integrates these strands by coupling 

detectors and LLM planners with a live twin that can evaluate counterfactuals under the 

same policy semantics as production, thereby creating a closed loop in which 

recommendations are tested, constrained, and attested before they reach the environment 

they are meant to protect. 
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III. Problem Statement and Objectives 

The central problem is to design a security automation system that can transform AI 

recommendations into safe actions with guarantees that matter to operators. The system 

must construct counterfactual experiments that are faithful to production state, express 

organizational policies as machine‑checkable temporal contracts, and quantify 

uncertainty so decisions remain conservative under partial knowledge. It must also 

generate evidence that links data, models, policies, and outcomes so that every decision 

can be audited long after the incident has closed. The objectives of TwinSOC are to raise 

detection quality through ensemble learning, to convert remediation plans into 

constrained action sets that satisfy policy contracts in the twin, to promote only those 

actions whose simulated effects keep availability and access within bounds, and to reduce 

analyst workload by returning explanations that pinpoint the failing preconditions when a 

recommendation is rejected. 

IV. System Overview and Design 
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Figure 1: TwinSOC architecture showing the flow from telemetry and intelligence into 

AI detection and planning, counterfactual verification inside a digital twin, policy‑safe 

decisioning with attestations, and controlled execution through the orchestration layer. 

 

TwinSOC is organized around five cooperating subsystems integrated with existing 

telemetry and orchestration stacks. An ingestion layer consolidates endpoint, network, 

and cloud control‑plane signals and refreshes a digital twin that encodes identity 

relationships, routing, and access policies at a level of abstraction appropriate for 

counterfactual simulation. A detection and planning core combines supervised models 

with an LLM that synthesizes candidate response plans from alerts and playbooks while 

emitting explanations that reference the evidence chain. A counterfactual engine executes 

proposed actions inside the twin, computes blast‑radius metrics, and evaluates 

temporal‑logic safety contracts that capture invariants such as mandatory reachability, 

least‑privilege constraints, and segregation of duties. A policy and safety shield consumes 

these results and issues a pass or fail verdict with calibrated confidence, and a provenance 

component running in trusted execution environments signs a decision bundle that binds 

model hashes, policy versions, data summaries, and the final verdict to a case identifier. 

Only when the verdict passes with sufficient confidence is an action forwarded to the 

orchestration layer for execution in production; otherwise, the system returns a structured 

explanation to the analyst console that describes which contract failed and how the plan 

can be adjusted. 

V. Modeling, Contracts, and Verification Methods 

Reliable counterfactuals require models and contracts that reflect operational realities. 

The digital twin captures service dependencies, access control graphs, and network 

segments as typed relations so that actions such as isolating a host, revoking a role, or 

tightening an egress rule can be simulated with fidelity. Temporal‑logic contracts 

describe invariants over these relations, including that specific health checks must remain 

reachable, that privileged identities cannot obtain broader access as a side effect of a 

change, and that cross‑segment isolation preserves required east‑west paths for critical 
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workflows. The counterfactual engine executes proposed actions against snapshots of 

twin state, evaluates contracts with a model checker, and computes risk metrics such as 

predicted service impact and residual exposure. Uncertainty arising from incomplete 

inventory or delayed telemetry is handled through conservative bounds and targeted 

queries that request fresh evidence before a verdict is issued, thereby keeping the system 

safe under realistic data conditions. 

VI. Integration with Security Orchestration and Human Oversight 

TwinSOC integrates with existing security information and event management, endpoint 

detection and response, and orchestration tools so that adoption does not require a 

wholesale replacement of the toolchain. Promoted actions are executed by the 

orchestrator using standard connectors, while the analyst console provides an approval 

workflow that can require human sign‑off for high‑risk changes or during early stages of 

deployment. Feedback from analysts is looped back to the planning models and 

playbooks so that the quality of recommendations improves over time, and the system 

maintains a case‑centric evidence store that links alerts, simulations, contracts, decisions, 

and outcomes for later investigation and compliance reporting. 

VII. Experimental Design and Evaluation 

The evaluation of TwinSOC should demonstrate improvements in detection quality, 

response correctness, analyst efficiency, and safety. A trace‑replay study can benchmark 

the system on representative attack scenarios by mirroring traffic and control‑plane 

events into the twin, issuing model‑generated plans, and observing pass or fail outcomes 

under the safety shield before comparing them with ground‑truth impact measurements in 

a staging environment. Live pilot deployments can measure the reduction in erroneous 

actions, the number of policy violations prevented by the shield, changes in mean time to 

respond, and analyst workload as reflected in case handling time and cognitive load 

surveys. Statistical analysis should report confidence intervals for each outcome and 

include ablations that remove the counterfactual engine or relax contracts to quantify the 

specific contributions of verification to overall performance. 

VIII. Results and Discussion 
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A well‑implemented TwinSOC deployment is expected to show that AI 

recommendations can be transformed into safe, auditable actions without sacrificing 

response speed. Counterfactual verification should prevent classes of outages caused by 

overly aggressive isolation or misapplied role changes, while explanations and evidence 

bundles should improve analyst trust and facilitate post‑incident reviews. The discussion 

should interpret observed improvements in terms that matter to operations, such as 

avoided minutes of service unavailability, reduction in improper privilege grants, and 

decrease in escalations, and it should examine the trade‑offs between stricter contracts 

and the throughput of automated actions. 

IX. Threats to Validity and Limitations 

Digital twins inevitably approximate reality and may miss configuration drift or 

ephemeral dependencies, which can lead to false assurances; mitigation requires 

continuous synchronization and conservative contracts that favor safety when doubt 

exists. The quality of AI recommendations depends on training data and prompt design, 

and model drift can degrade performance over time; regular evaluation and fallback to 

human‑only workflows preserve resilience. Formal contracts may be incomplete or too 

strict at first, so organizations must iterate on their specification and monitor for 

unintended blocking of legitimate responses. Finally, the attestation mechanism must 

protect sensitive information while remaining verifiable by authorized stakeholders, 

which motivates the use of trusted execution environments and careful redaction policies. 

X. Ethical, Legal, and Pedagogical Considerations 

Automated defenses influence user access and service availability, so the system must 

operate under clear governance with accountable human oversight and transparent 

evidence for every decision. TwinSOC provides such transparency by attaching 

explanations and signed provenance to each action, enabling audits and appeals where 

necessary. From an educational standpoint, the framework unifies core Computer Science 

and Engineering themes such as modeling, formal specification, machine learning, 

systems design, and security compliance into a coherent, hands‑on project that can be 

reproduced in academic laboratories without exposing real production systems. 
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XI. Conclusion 

TwinSOC reframes AI‑driven security automation as a verifiable process in which 

recommendations are validated as counterfactuals inside a faithful digital twin, 

constrained by explicit safety contracts, and promoted to production only when evidence 

supports a positive verdict. By combining detection, planning, formal verification, and 

provenance in a single pipeline, the framework delivers practical assurances that help 

security teams adopt AI responsibly while maintaining availability and compliance. The 

architecture and methods described here can be implemented incrementally on top of 

existing tools, creating a path from advisory AI to trustworthy, policy‑safe autonomy in 

incident response. 
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